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Projection in the occupation-number space and the 
canonical transformation 

V. N. FOMEXKO 
Physical Research Institute, Leningrad State University, Leningrad, U.S.S.R. 
MS.  receized 4th June 1969 

Abstract. In this paper a method for projecting the Bardeen-Cooper-Schrieffer 
states with respect to the particle number is suggested. This method does not involve 
the Fowler-Darwin integrals which are usually applied for this purpose. Energy 
matrix elements of an arbitrary single-particle operator and overlap integrals are cal- 
culated in the quasi-particle representation and are expressed analytically in terms of 
the U and ZI parameters. The  volume of calculations according to the method sug- 
gested increases linearly with the size of the system in the case of factorizable pairing 
matrix elements (the weaker the particle-number fluctuations, the smaller the 
quantity of calculations). 

In the paper the limiting case of weak correlations is considered and comparison 
with perturbation theory is carried out. 

The method is illustrated by some model systems. 

1. Introduction 
The Bardeen-Cooper-Schrieffer (1957, to be referred to as BCS) approach is applied 

widely in nuclear physics to the description of states when pairing forces are taken into 
consideration (Belyaev 1959). This method is especially successful in accounting for the 
two-quasi-particle states with seniority two and one-quasi-particle states (Kisslinger and 
Sorensen 1960, Pyatov and Soloviev 1964). 

However, there is understandable disagreement with experiment which (as the cal- 
culations for several nuclei have shown (Richardson and Sherman 1964 a)) is accounted 
for, to a considerable extent, by the fact that the BCS trial wave function, borrowed from 
solid state theory, describes the nuclear states considerably more badly. It results from 
the smaller relative (i.e. divided by the constant of the pairing correlations) density of 
the levels of the average nuclear field. When applying the BCS approximation to the 
nuclear structure one should bear in mind that the BCS states are not the eigenstates of 
the particle-number operator. The number of particles that effectively take part in the 
correlations is not large because of the small density of the levels; the errors connected with 
non-conservation of the number of particles are appreciable. Kerman et al. (1961), using 
the projected (relative to the number of particles) BCS states, have shown that disagreement 
of the exact results and the BCS calculations may be accounted for practically only by the 
particle-number non-conservation. 

In  recent years a number of efforts have been made to solve the above-mentioned 
problem (Bayman 1960, Iwamoto and Onishi 1967, Chasman 1963, Richardson and 
Sherman 1964 b). Bayman considered the well-known integral of the Fowler-Darwin 
type, excluding fluctuations in the number of particles, by using the saddle-point approxi- 
mation (i.e. for large fluctuations). However, this approach proved to be the usual BCS 
approximation. The  corrections to the Bayman method were obtained by Iwamoto and Onishi 
using the approximation of large fluctuations. The methods of Chasman and of Richardson 
and Sherman employ the wave functions, strictly conserving the number of particles. 
However, these methods are rather complicated and do not allow generalizations in the 
cases of non-factorizable matrix elements. Fluctuations of the number of particles are 
excluded exactly in the paper by Dietrich e t  al. (1964) and the Fowler-Darwin integrals 
are calculated with the aid of the recurrence formulae. This method can also be used in 
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the case of the variable matrix elements of the pairing interaction. However, when we 
deal with real systems containing large numbers of particles, the quantity of calculation 
in this method increases rapidly. This is a defect of this method. 

In  this paper a new method free from the above-mentioned defects is suggested. In  
contrast with the other approaches this method does not use the integrals of the Fowler- 
Darwin type, though it includes the projecting procedure of the BCS states. The  integrals 
are replaced by the sums; the number of terms in the sums is not large for real systems. 
I n  contrast with the methods using the saddle-point approximation the accuracy of 
projecting in our approach is higher (and not lower) for weak correlations if the quantity 
of calculations is the same. Thus, our method may be applied to the description of all 
the excited states with non-zero seniority. 

As for the quantity of calculation, it increases practically linearly with the number of 
particles (for the factorizable matrix elements). Evidently, slower increase of the quantity 
of calculation (with increase of the system size) is impossible. 

I t  should be noted that our method is a generalization of the representation suggested 
by Krutov for describing the excited paired states and considered in the paper by Krutov 
and Fomenko (1970). In  this paper the states which are the particular case of the states 
considered in the present paper were used. 

In  5 2 we consider different variational approaches for solving the pairing Hamiltonian. 
In  5 3 the method for projecting in occupation-number space is obtained. The  matrix 
elements and overlap integrals are calculated in 5 4 in the quasi-particle representation 
using the projected states. The  limiting case of small correlations is investigated in 5 5. 
Small correlations are shown to lead, in the variational approximation with particle-number 
conservation, to the trivial solution (no configuration mixing) only in the case when the 
pairing forces vanish. The comparison with perturbation theory is carried out. The  
results of the numerical calculations for some model systems illustrating the convergence 
of the method are presented in 4 6. 

2. Variational approach and particle-number conservation 

(Belyaev 1959) 
The Hamiltonian of the pairing type for a system of neutrons or protons has the form 

H = 2 (E,-hz)(a,+a,+u_,+a_,)-  2 G,,,av,+a-v,+a-va,.  (1) 
V V’ v 

In  (1) a,+ and a,  are the particle creation and annihilation operators for the state 
[v), E ,  is the single-particle energy of the average field, A, is the chemical potential, Gv,, 
are the matrix elements of the pairing interaction, and the subscript v labels the set of 
quantum numbers, + U  and - U  being related to each other by the time reversal. 

Obviously, the Hamiltonian (1) has states which represent a system of particle pairs 
a,+u-,+jO) scattered over average field levels and 10) is the particle-vacuum state. I n  
this case we have the ground state or an excited one depending on the pair distribution 
over the levels. 

States with unpaired particles aiv+lO) occupying some levels of the average field can 
also exist. Evidently these levels do not take part in pair scattering, the states of the other 
particles being determined only by the unblocked levels of the average field. These states 
can be described in the same way as the states without blocking. 

In  what follows we consider only states which can be reduced to the ground state with 
no levels blocked. This means that we do not consider the O +  excited states of the even 
proton or neutron system. 

The  state of the following form 

is usually considered to describe approximately the system of paired particles, 
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This approximation is called the BCS approximation. The numbers U,  and 0, are 
hole and particle amplitudes, respectively. They satisfy the normalization condition 
~ ~ ~ + a , ~  = 1, or equivalently a, = sin y,, U, = cos y,. We shall assume in what 
follows with no loss of generality that U, 0. 

I n  the BCS approximation the average number of particles in state (2) is made equal 
to the real number of particles in the system according to the following condition: 

where Lg is the particle-number operator 

If one finds yv by minimizing the form ($[HI$)  and satisfying (3),  one obtains (Belyaev 
1959) the following expression for U,, 

and the following system of superconductivity equations 

AV 2Av! = C G,Vv 
, { ( E ,  - Af)2 + Av2)1/2 

where 2, = E , -  GVVwV2 and the parameters A, and A, are derived from (3) and (6). 
The  wave function (2) is not an eigenstate of the Hamiltonian ( l ) ,  whichever set of v V  

is used. I t  results from the fact that (2) is not an eigenstate of the particle-number operator 
unlike every eigenstate of the Hamiltonian (1). Thus (2) describes a superposition of 
states of several neighbouring nuclei (rather than a state of a given nucleus with a definite 
number of nucleons) with the same average field and with the number of nucleons differing 
by an even number. 

Clearly, one obtains a more exact approximation when the component of (2) with the 
real number of particles is used as a trial function. This approximation was called the 
FBCS approximation (Dietrich et al. 1964, Mang et al. 1966). The  approximation in 
which the state is described by the component of (2) with the correct number of particles 
with y, the same as in the BCS approximation is also employed. Henceforth we shall 
denote this as the PBCS approximation (Kerman et al. 1961). 

The  BCS approximation can lead to noticeable errors; the PBCS approximation has 
been shown (by Kerman et al. 1961) to be in good agreement with the exact calculations 
for strong correlations. But the agreement becomes worse in the case of weaker correlations. 
The  FBCS procedure is always good enough (Mang et al. 1966). 

T o  make use of the PBCS or FBCS approximations one has to project out the proper 
component from (2), which in the following text will be called the physical component. 
I n  other words, one has to project states (2) in the occupation-number space, 

The  practical value of these approaches depends on the projection technique used. 
If I+) is the projected BCS state (2), we can write 

(+IHl4 ) = +i4Hl+) + 
where E(q,,) is the correction to the BCS energy ($jHl$) due to the particle-number 
non-conservation. I n  this case the variational equations of the FBCS approximation can 
be written as follows : 

( 7 )  2 ($lHI$) +-- W Y ” )  - - 0. 
ay, a’p Y 
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Equation ( 7 )  should be solved by the iteration procedure. First, one solves the BCS 
equation 

= 0.  a <*PI* ) 
a'p U 

Then substituting the obtained ( p V ( O )  into aE[2cpv one solves the BCS-type equation 
but with the right-hand side 

The rpv(I) obtained from this equation are employed for calculating 2E18cpu and so on until 
the iteration process has converged. Certainly, not only the BCS solutions can be used 
as the first approximation for iteration. 

The  representation in the form of the integral of the Fowler-Darwin type is, as a rule, 
used for projection, the projected state with P particle pairs having the form 

where the integrals are calculated along the contour surrounding the x = 0 point. 
Further, the matrix elements are calculated using 14). They are expressed in terms 

of integrals similar to the integrals in (8). The  integrals obtained are calculated exactly 
(Dietrich et al. 1964) or in the saddle-point approximation (Bayman 1960, Iwamoto and 
Onishi 1967). 

However, both methods have defects decreasing their practical value. The  first method 
when applied to real systems is associated with too large a quantity of calculation. The  
second one can only be used in the case of strong particle-number fluctuations. 

3. Formulation of the method 

no use is made of the integral representation (8). 
I n  the present paper we have chosen another way to project the BCS states ( 2 )  where 

We note that the state 

(where tl is a complex number not equal to zero) does not differ from the state (2) by its 
physical components since these components contain vvp and U cancels. Hence the degree 
of freedom related to the choice of U. is not physical. We shall use it to extract the physical 
components. 

Let us consider the state 

{rI(uv + uvav+a- v + )  + ( - ) p  11 (uu  - z;uav +a-  +)) io ) (10) 
U V 

where c is the normalization constant. 
One can easily see that the physical component in (10) is the same as in ( 2 ) .  However, 

the non-physical components in (2) with the number of pairs P+ 1, P+ 3, Pi- 5 ,  ... are 
excluded from (10). 
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Let us consider the state 

c n(uV +o,a,+a- V + )  +( - ) ' n ( u V  -ova,+a-,>+) [ ,  V 

Here, in addition, the components with the number of pairs Pi 2, Pf 6, Pf 10, ... will 
be excluded because these components have equal values and opposite signs in the first 
and second lines of formula (11). 

Using this procedure we can exclude all non-physical components. It can be formally 
proved as follows. Let us consider the state 

L v  V 

where T~ = exp(icpk), cp = .rr/(n+ 1) and n is a non-negative integer. 

has the form 
The amplitude in (12), corresponding to Q particle pairs occupying the levels pl, ...,,U@, 

But 

0 
1 otherwise 

if M # 21(n+ 1) 1 2 n + l  

2 exp(icpkM) = 
2(n+1) k=O 

where 1 is an integer. 
Therefore, only the components with the pair numbers P+ 2Z(n+ 1) differ from zero 

in (12). If 2(n+1) > max(P, L - P )  ( L  is the total pair degeneracy of the system), then 
(12) gives the projected state (S), i.e. we have I J n >  = I + > .  Certainly there is no practical 
need to eliminate all non-physical components because their amplitudes decrease rapidly 
when removing from the real number of particles 2P. Indeed, the root-mean-square 
width of the wave packet with respect to the particle number 

does not exceed 3 for real cases. We shall consider the question of the choice of the value 
of n justified in practice in 0 6 (the choice of too large a value of n makes the calculations 
complicated and does not change the result essentially; when too small a value of n is 
chosen, there remains a considerable admixture of non-physical components). Here we 
shall confine ourselves to the following remarks. The root-mean-square fluctuation (14) 
in the excited unpaired states is always smaller than in the ground state since the presence 
of the blocking particles leads to a decrease in the level density. Moreover, the fluctuations 
can be suppressed for the nuclei with the filled subshells. However, such states involve 
less numerical calculations in the present method because of the possibility of a decrease 
in n when the wave packet becomes narrower with respect to the particle number. We 
observe the opposite situation in other methods using the saddle-point approach where 
states with small correlations cannot be described satisfactorily. 
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4. Calculation of matrix elements with projected states 

representation by means of the Bogoliubov-Valatin canonical transformation 
T o  obtain the matrix elements with the state (12) we pass over to the quasi-particle 

where T/.,.~+ and K,., are the creation and annihilation operators for quasi-particles. State (2) 
is the quasi-particle vacuum in the following sense : 

for arbitrary v.  

obtains the following expression 

% I $ )  = X - v l $ >  = 0 (16) 

When the operators A, = T/ . : -~Q,  for quasi-particle pairs are introduced, one easily 

(17) 
The operators we are interested in can also be written in the quasi-particle representation. 
In  particular, the Hamiltonian (1) takes the form 

H -  XlV = H00 + H I ,  + H20 + H22 + H31-k H40 (18) 
when the transformation (15) is carried out. In  (18) X labels an arbitrary reference level 
for the average field energies and is introduced only to preserve the conventional form, 
Hi, denotes the sum of the component containing i creation and k annihilation quasi- 
particle operators normally ordered and the Hermite conjugate expression. T o  save space 
we do not cite the operators Hi,. They may be found in Belyaev's (1959) paper. 

For calculating the matrix elements of the Hamiltonian (18) we shall make use of the 
fact that H is the operator conserving the particle number and connecting the components 
only with the equal numbers of particles. Therefore we have 

( $ n l H l , k - P  n<.u + ,icz'ua, +a-  V +) 10 > = ($,[HI$ >. (19) 
V 

Hence we can replace the matrix element ($nlHl$n)  by 2(n+ l)c($nlH/#). Only the 
components of (18) that do not contain annihilation quasi-particle operators contribute 
in accordance with (16) to the latter matrix element, namely Hoo and the corresponding 
parts of I f z o  and H40. Thus, only the vacuum, two- and four-quasi-particle components 
of the expansion (17) are of interest for us. 

Let us give the final formula for the expectation value of energy 
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i f k  = 0, n + l  
otherwise ‘k = l1 Yk n + l  

xk = - x =  k k = O  C’ 2 ’  

GvuY v ~ v m Y u 4 1 n  GYvYv4%n 
Smnk = 2 2 2 ’  T n k  = 2 - 

Gv, = gvgu 

vu f v k  fuk v f v k  

I n  the case of the factorizable pairing matrix elements we have 

and the expression (204 becomes simpler, since in this case one should calculate only two 
sums instead of five (So,, 5’10, 5’11, 2712, S22). 

and we have 
Smnk smksnk 

1 
s2k = (? gvyv-c0s2 XkSOk 

Let B be an arbitrary single-particle operator conserving the number of particles (for 
instance, the electromagnetic moment). Then, proceeding in the way outlined above, 
one can obtain the matrix elements of B with projected states. We give some of them 
here : 

-1 

<$nlB]$n)  = ( 2  €kRkcos $k) €kRk 
V k 

( 2 2 4  
Y V B V  - v Z 0  x 2 (2 cos $,sin2 xk8v + sin $ksin(2xk)} 

Y 
2 

f v k  
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where the following notations were introduced 

(23) B = B 00 + 2 (Bpallcxp + cxa + Bpazotlp +cxa + + Bpa20cxacxp) 
PO 

av+/$nu)  describes the projected state and the unpaired particle occupies the level v. The  
quantities RkY and are defined for the system of paired particles, with level v excluded, 
according to formulae (21). 

In  particular, we have for the particle-number operator for level 

R,, = a,+a,+a-,+a-, 

the following expressions : 

BOO = 2~ U ,  2 Bpall = ~,,(6,, + 6, - ,)a, 

V 

(4') 

Yv 
- 6 ,  - ,) --. 

2 
BpUz0 = BP2O = 6, 

The overlap integrals which are employed in the calculations 
factors for /3 decay, ( E ,  p) reactions and other processes have the following form: 

(24) 

of the spectroscopic 

with 

The  other notations are obvious. In  formulae (20)-(26) the parameter n determines the 
extent to which non-physical components are excluded from in the sense stated 
above. 

As is seen from formulae (20)-(26), in the case of the factorizable pairing matrix 
elements the number of calculations of the matrix elements and overlap integrals with the 
projected states 16) increases quadratically with the number of particles in the system. 
Indeed, n increases linearly as well as the number of calculations connected with each 
term in the sum over k. However, our numerical estimates show that we can restrict 
ourselves to a rather small n (with practically no decrease in accuracy) both for large and 
small systems. This is possible due to the fact that the width of the wave packet (14) 
is not changed significantly when the size of the system increases. Thus, in the present 
method the quantity of calculation depends linearly on the number of particles in the 
system. In  other words, the same number of calculations are required for a large system 
as for two systems of half its size, The  method by Dietrich et al. (1964) in which integrals 
of type (8) are calculated exactly is more sensitive to the size of the system, since we 
consider finite sums containing a small number of terms instead of integrals (8). I n  the 
limit of infinite values of n the sums over k in formulae (20)-(26) will turn into integrals of 
the type (8) but the result remains the same as for finite n's. Thus, the mathematical 
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apparatus of the integrals of the Fowler-Darwin type is directly adjusted for treating 
infinite systems. However, in practice it is sufficient to describe finite systems containing 
only nucleons effectively taking part in the correlations, i.e. nucleons near the Fermi 
surface. 

5. The limiting case of weak correlations 
Let us now consider the limiting case of weak configuration mixing. 
I t  can be seen from formula (13), which gives the expansion of the projected BCS 

state over the amplitudes of different orders? for Q = P, that the configuration mixing 
due to the pairing is stronger (weaker), the larger (smaller) the ratio .,/U, above (below) 
the Fermi surface. Since above (below) the Fermi surface v,/u, 6 1( 3 l), we can conclude 
that the larger yu (equation (21)), the stronger the configuration mixing. It follows from 
(14) that the strong (weak) correlations, i.e. the configuration mixing, correspond to the 
large (small) root-mean-square fluctuations in the particle number (14) in the BCS state 

We shall now assume y ,  to be small. First we shall prove that the configuration mixing 
(y,  # 0) is present in the FBCS (i.e. in the variational approach treating the projected 
states as trial functions) no matter how small the G,, are. The presence of correlations in 
the case of very small G,, is easily seen, for example, from perturbation theory. However, 
the possibility of describing the weak correlations using an approximate method is not 
obvious. Meanwhile this is an important question because the most excited states with 
seniority two of heavy nuclei (Pyatov and Soloviev 1964) lie just in that region where the 
BCS approximation becomes a poor tool for describing the correlations. 

T o  investigate the limit of y, small we shall first expand the energy expectation value 
(+lHI4) in the series over yv up to the second order (it should be remarked that only even 
orders are non-vanishing). I t  follows from (13) that the non-physical components with the 
number of pairs Q = P+_V ( P  being the real number of pairs) make the contribution of 
the order yvZM. Therefore, there is no need to exclude the components with &I 3 2. 
In  this case it is sufficient to put n = 0 in (12). We then obtain from (20) 

<$IHI+) = (&IHIJO)+O(YV~) = 2 2 6,- 2 Gvv-B 2 2 G,~YVY,+O(YV~). 

(2). 

(27) 

denotes the summation over occupied (empty) levels when 
G,, = 0. As is seen from (27), small yv do not correspond to the energy minimum. We 
conclude, therefore, that the correlations are present in the FBCS unless all G,, are equal 
to zero. 

Our argument is valid only for the systems in which each level is either completely 
occupied or empty when G,, = 0. If there are partially filled levels (spherical nuclei with 
partially filled subshells) and one restricts oneself to the case of the constant-pairing 
matrix elements G,, = G, then yf (corresponding to the statesf of the partially filled level 
ef) will never be small, because the many-particle states corresponding to this level are 
always involved in the superposition with equal amplitudes (as in the case of one degenerate 
level). 

Since in this case not all yv are small, the root-mean-square fluctuation (14) cannot be 
assumed to be small as well. For this reason we shall consider infinitely large n(n --f cc) 
in the formulae (20), thus introducing integrals. Then we obtain 

i' < f L9f icf  U > f  

In  (27) Cvsf( 

(+IHI$> = 2 2 Ev-GP-GPf(nf-Pf)-G{Pf 2 YV+(Qf.-Pf)  2 Y J .  (28) 
v < f  V Z f  VCf 

t We follow here the terminology used by Chasman (1964) and call the amplitude of a state in 
which n particle pairs are excited and located above the Fermi surface the amplitude of the nth 
order. 
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In  (28) P, and Qf are the number of pairs in the levelfwhen G = 0 and its pair degener- 
acy, respectively. 

As follows again from (28), yv  = 0 does not represent a stationary point for finite G 
and consequently there exist correlations in the FBCS states. 

Let us now discuss the case of small Gt. In  this case we expand the series up to the 
quantities of the order y: and do not consider the quantities of the order Gy: when there 
are no partially filled levels, and we take into account the quantities of the order yv2 and 
drop those of the order GyY2 when a partially filled level is present. 

When there is no partially filled level we obtain 

G 
(41Hl$) = 2 c E V + B  ( c Yv2 c c Yv2 c EuYu2-GP- 5 2 Yc. c Yu) 

v < f  V C f  l i>f  V > f  UCf V < f  u>f 

(29) 
considering n = 1, in accordance with (13). For the case when there is a partially filled 
level we have 

I 

x c I 'v -~ r lyv , - -GP-G~f (Q, -~ , ) -G~~ ,  2 YV+(Qf--P,) 1 Y " )  
v < f  V > f  V < f  

taking n -+ CO. 

partially filled level is absent we have 
From (29) and (30) one can obtain yv corresponding to the energy minimum. When a 

where A,, is the amplitude for the excitation of a pair of particles from the state IpcL) to 
the state /v) with the ground-state amplitude assumed to be unity. E,  and E, satisfy the 
following system of equations : 

When a partially filled level is present, one obtains for the amplitudes 

G{(P, + 1)(Q, - PT))", 

2IEll  -Ef I 
(33) G(Pf(af - Pf + 1)}1/2 - A,, ="( Pf ) - 

2 Q,-P,+l 21% -6, I 
I n  (33) A,, is the amplitude of the state in which there are Pf+ 1 pairs on the level ef 

and no pair in the state Ip), A,, corresponds to Pf - 1 pairs on the level ef and one pair in 
the state Iv), the amplitude of the ground state being assumed to be unity. The  distri- 
bution of the pairs over other levels is the same as in the ground state at G = 0. 

t For the sake of simplicity, we assume further Gvv = G. 
A 3  
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The amplitudes (31) and (33) are proportional to G. On the other hand, the amplitudes 
in the first order of perturbation theory are also proportional to G. Therefore it is inter- 
esting to compare the results obtained with the perturbation theory results. 

I t  can easily be seen from (31) that the amplitude A,, does not generally coincide with 
the perturbation-theory amplitude. Indeed, we have from (31) 

However, for the amplitudes obtained from perturbation theory we have 

A,, - E , - %  % - E ,  A,, 
A,, E p - E u  % - E &  A,, 

#-=-  (35) 

when E,  f eo. The relation (34) is a consequence of the separability of the amplitudes 
(Chasman 1963, 1964) of the BCS states (13) where each amplitude of the first order may 
be presented in the form 

A,, = c'DU-'D, (36) 

where 

and c' is the normalization constant. The  approximation (36) considers the individual 
pairs of particles to be scattered independently of the configuration of the other particles, 
the probability for the level occupation being proportional to DV2. This picture is real for 
bosons which are scattered independently. However, fermions correlate according to the 
Pauli principle. Of course, the quantities D,  effectively take into account these correlations 
just as the Hartree-Fock field effectively includes two-body forces. But the relation (36) 
cannot generally yield the correct amplitudes. In  particular, this relation contradicts 
perturbation theory in the case of weak correlations as we have seen above. 

When there is no partially filled level, but all filled or empty levels are degenerate when 
G = 0, the result (31) coincides with the perturbation theory amplitudes, I n  this case 
separability (equation (36)) is no longer an approximation since the amplitudes depend 
only on one level above or below the Fermi surface. Similarly, the results (36) and the 
perturbation theory results coincide when there is a partially filled level. 

6.  Numerical estimates of the convergence of the method 

The numerical caIculations are performed for three model systems : the Pawlikowski- 
Rybarska (1962) model and two systems investigated by Richardson (1966) with the 
parameters P = 4, G = 0.8 and P = 16, G = 0,375. 

The Pawlikowski-Rybarska model is a system of five equally spaced two-fold degenerate 
levels which contain six fermions. The  level spacing and pairing interaction strength are 
assumed to be unity. The  Richardson models are systems with two-fold degenerate levels 
with the level spacing assumed to be unity ( P  is the number of pairs in the system). The  
purpose of the numerical estimates being the investigation of the convergence of the method 
(i.e. the determination of practically justified n in (12) and (20)-(26)), only the ground 
states have been considered; the convergence for the excited states is certainly more rapid. 
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Table 1. Ground-state energies \. 0 1 2 3 7 PBCS 
System\ 

- -1.20 P - R  -0.27 -1.20 - - 
P = 4 -0.12 -1.38 -1.41 - - -1.41 
P = 16 -0.07 -1.62 -1.88 -1.89 -1.89 -1-89 

In  table 1 the ground-state energies for the corresponding model systems are given, 
the BCS energy (i.e. I f o o )  being the reference level. The  level spacing is used as a unit of 
energy (for heavy deformed nuclei this unit is approximately equal to 400 kev). 

Table 2. Average occupation-probability corrections 

1 2 3 7 PBCS 

- 0.0537 P - R  0.0149 0.0537 - - 
P = 4 0.0066 0.0387 0.0392 - 
P = 16 0.0041 0.0335 0.0355 0.0355 0.0355 0.0353 

- 0.0392 

In  table 2 the following quantities are given: 

i.e. the occupation-probability corrections (averaged over the levels) connected with the 
projection of states using different ni-. 

In  tables 1 and 2 the repeated results (when one moves from left to right) are omitted. 
They correspond ton > no,  no being the minimal integer for which 2(n0 + 1) > max (P, L -P), 
i.e. for which the projection is performed exactly. 

One sees from tables 1 and 2 that n = 2 ensures practically exact values of energy and 
occupation probabilities both for large and small systems with realistic parameter sets. 
It is worth noting that n can be further decreased for the excited states, especially for the 
first excited states with seniority two. 

The  formulae (20)-(26) can be simplified still more. According to our estimates, the 
quantities T,, in (20d) contribute not more than 2-3% of the total correction (that is 
20-30 kev) when P is about 15. For small systems, however, these terms can give more 
than 10% of the total contribution (more than 50 kev). 

The  angle i)Jl in (20) was found to be approximately equal to 4" for the Pawlikowski- 
Rybarska model. Putting i)J1 = 0 in the formulae (20) one obtains an error of 1% (nearly 
5 kev). The angles i)Jk are exactly equal to zero for the systems with the levels E, symmetric 
with respect to the chemical potential. The  approximation i )Jk  = 0 will probably be good 
enough for the real systems also. 

Bearing in mind the results obtained, we should like to hope that our method (owing 
to its simplicity and accuracy) will incRase the practical value of the variational approach 
with the conservation of the particle number (FBCS) and will make possible its wider 
applications to spectroscopic calculations and investigation of nuclear structure when the 
pairing Hamiltonian is solved. 

t For the system with P = 16, G = 0.375 the corrections were averaged only over the six levels 
nearest to the Fermi surface. 
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